[image: image1.jpg][wod poaynuob]-—




gantthead.com
Most Common Schedule Risks

Most Common Schedule Risks

· Creeping requirements 

· Requirements or developer gold-plating 

· Shortchanged quality 

· Overly optimistic schedules 

· Inadequate design 

· Silver-bullet syndrome 

· Research-oriented development 

· Weak personnel 

· Contractor failure 

· Friction between developers and customers 

Overview of Complete List of Schedule Risks

PRIVATE
Schedule Creation

· Schedule, resources, and product definition have all been dictated by the customer or upper management and are not in balance. 

· Schedule is optimistic, "best case," rather than realistic, "expected case." 

· Schedule omits necessary tasks. 

· Schedule was based on the use of specific team members, but those team members were not available. 

· Cannot build a product of the size specified in the time allocated. 

· Product is larger than estimated (in lines of code, function points, or percentage of previous project’s size). 

· Effort is greater than estimated (per line of code, function point, module, etc.). 

· Re-estimation in response to schedule slips is overly optimistic or ignores project history 

· Excessive schedule pressure reduces productivity. 

· Target date is moved up with no corresponding adjustment to the product scope or available resources. 

· A delay in one task causes cascading delays in dependent tasks. 

· Unfamiliar areas of the product take more time than expected to design and implement. 

Organization and Management

· Project lacks an effective top-management sponsor. 

· Project languishes too long in fuzzy front end. 

· Layoffs and cutbacks reduce team’s capacity. 

· Management or marketing insists on technical decisions that lengthen the schedule. 

· Inefficient team structure reduces productivity. 

· Management review/decision cycle is slower than expected. 

· Budget cuts upset project plans. 

· Management makes decisions that reduce the development team’s motivation. 

· Non-technical third-party tasks take longer than expected (budget approval, equipment purchase approval, legal reviews, security clearances, etc.). 

· Planning is too poor to support the desired development speed. 

· Project plans are abandoned under pressure, resulting in chaotic, inefficient development. 

· Management places more emphasis on heroics than accurate status reporting, which undercuts its ability to detect and correct problems. 

Development Environment

· Facilities are not available on time. 

· Facilities are available but inadequate (e.g., no telephone, network wiring, furniture, office supplies, etc.) 

· Facilities are crowded, noisy, or disruptive. 

· Development tools are not in place by the desired time. 

· Development tools do not work as expected; developers need time to create workarounds or to switch to new tools. 

· Development tools are not chosen based on their technical merits, and do not provide the planned productivity. 

End Users

· End user insists on new requirements. 

· End user ultimately finds product to be unsatisfactory, requiring redesign and rework. 

· End user does not buy into the project and consequently does not provide needed support. 

· End user input is not solicited, so product ultimately fails to meet user expectations and must be reworked. 

Customer

· Customer insists on new requirements. 

· Customer review/decision cycles for plans, prototypes, and specifications are slower than expected.

· Customer will not participate in review cycles for plans, prototypes, and specifications or is incapable of doing so—resulting in unstable requirements and time-consuming changes. 

· Customer communication time (e.g., time to answer requirements-clarification questions) is slower than expected. 

· Customer insists on technical decisions that lengthen the schedule. 

· Customer micro-manages the development process, resulting in slower progress than planned. 

· Customer-furnished components are a poor match for the product under development, resulting in extra design and integration work. 

· Customer-furnished components are poor quality, resulting in extra testing, design, and integration work and in extra customer-relationship management. 

· Customer-mandated support tools and environments are incompatible, have poor performance, or have inadequate functionality, resulting in reduced productivity. 

· Customer will not accept the software as delivered even though it meets all specifications. 

· Customer has expectations for development speed that developers cannot meet. 

Contractors

· Contractor does not deliver components when promised. 

· Contractor delivers components of unacceptably low quality, and time must be added to improve quality. 

· Contractor does not buy into the project and consequently does not provide the level of performance needed. 

Requirements

· Requirements have been base lined but continue to change.

· Requirements are poorly defined, and further definition expands the scope of the project. 

· Additional requirements are added.

· Vaguely specified areas of the product are more time-consuming than expected.

Product

· Error-prone modules require more testing, design, and implementation work than expected. 

· Unacceptably low quality requires more testing, design, and implementation work to correct than expected. 

· Development of the wrong software functions requires redesign and implementation. 

· Development of the wrong user interface results in redesign and implementation. 

· Development of extra software functions that are not required (gold plating) extends the schedule. 

· Meeting product’s size or speed constraints requires more time than expected, including time for redesign and re-implementation.

· Strict requirements for compatibility with existing system require more testing, design, and implementation than expected. 

· Requirements for interfacing with other systems, other complex systems, or other systems that are not under the team’s control result in unforeseen design, implementation, and testing. 

· Pushing the computer science state-of-the-art lengthens the schedule unpredictably. 

· Requirement to operate under multiple operating systems takes longer to satisfy than expected. 

· Operation in an unfamiliar or unproved software environment causes unforeseen problems. 

· Operation in an unfamiliar or unproved hardware environment causes unforeseen problems. 

· Development of a kind of component that is brand new to the organization takes longer than expected. 

· Dependency on a technology that is still under development lengthens the schedule. 

External Environment

· Product depends on government regulations, which change unexpectedly. 

· Product depends on draft technical standards, which change unexpectedly. 

Personnel

· Hiring takes longer than expected. 

· Task prerequisites (e.g., training, completion of other projects, acquisition of work permit) cannot be completed on time.

· Poor relationships between developers and management slow decision-making and follow through. 

· Team members do not buy into the project and consequently does not provide the level of performance needed. 

· Low motivation and morale reduce productivity.

· Lack of needed specialization increases defects and rework. 

· Personnel need extra time to learn unfamiliar software tools or environment. 

· Personnel need extra time to learn unfamiliar hardware environment. 

· Personnel need extra time to learn unfamiliar programming language. 

· Contract personnel leave before project is complete. 

· Permanent employees leave before project is complete.

· New development personnel are added late in the project and additional training and communications overhead reduces existing team members’ effectiveness. 

· Team members do not work together efficiently. 

· Conflicts among team members result in poor communication, poor designs, interface errors and extra rework.

· Problem team members are not removed from the team, damaging overall team motivation. 

· The personnel most qualified to work on the project are not available for the project. 

· The personnel most qualified to work on the project are available for the project but are not used for political or other reasons. 

· Personnel with critical skills needed for the project cannot be found. 

· Key personnel are available only part time. 

· Not enough personnel are available for the project. 

· People’s assignments do not match their strengths. 

· Personnel work slower than expected. 

· Sabotage by project management results in inefficient scheduling and ineffective planning. 

· Sabotage by technical personnel results in lost work or poor quality and requires rework. 

Design and Implementation

· Overly simple design fails to address major issues and leads to redesign and re-implementation. 

· Overly complicated design requires unnecessary and unproductive implementation overhead. 

· Inappropriate design leads to redesign and re-implementation. 

· Use of unfamiliar methodology results in extra training time and in rework to fix first-time misuses of the methodology. 

· Product is implemented in a low-level language (e.g., assembler), and productivity is lower than expected. 

· Necessary functionality cannot be implemented using the selected code or class libraries; developers must switch to new libraries or custom-build the necessary functionality.

· Code or class libraries have poor quality, causing extra testing, defect correction and rework. 

· Schedule savings from productivity enhancing tools are overestimated. 

· Components developed separately cannot be integrated easily, requiring redesign and rework.

Process

· Amount of paperwork results in slower progress than expected. 

· Inaccurate progress tracking results in not knowing the project is behind schedule until late in the project. 

· Upstream quality-assurance activities are shortchanged, resulting in time-consuming rework downstream. 

· Inaccurate quality tracking results in not knowing about quality problems that affect the schedule until late in the project.

· Too little formality (lack of adherence to software policies and standards) results in miscommunications, quality problems, and rework).

· Too much formality (bureaucratic adherence to software policies and standards) results in unnecessary, time-consuming overhead). 

· Management-level progress reporting takes more developer time than expected. 

· Half-hearted risk management fails to detect major project risks.

· Software project risk management takes more time than expected.

©2007 gantthead.com
2

